High-Utility Sequential Pattern Mining with Multiple Minimum Utility Thresholds

نویسندگان

  • Chun-Wei Lin
  • Jiexiong Zhang
  • Philippe Fournier-Viger
چکیده

High-utility sequential pattern mining is an emerging topic in recent decades and most algorithms were designed to identify the complete set of high-utility sequential patterns under the single minimum utility threshold. In this paper, we first propose a novel framework called high-utility sequential pattern mining with multiple minimum utility thresholds to mine high utility sequential patterns. A high-utility sequential pattern with multiple minimum utility thresholds algorithm, a lexicographic sequence (LS)-tree, and the utility-linked (UL)-list structure are respectively designed to efficiently mine the HUSPs. Three pruning strategies are then introduced to lower the upper-bound values of the candidate sequences, and reduce the search space by early pruning the unpromising candidates. Substantial experiments on real-life datasets show that our proposed algorithms can effectively and efficiently mine the complete set of HUSPs with multiple minimum utility thresholds.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High Fuzzy Utility Based Frequent Patterns Mining Approach for Mobile Web Services Sequences

Nowadays high fuzzy utility based pattern mining is an emerging topic in data mining. It refers to discover all patterns having a high utility meeting a user-specified minimum high utility threshold. It comprises extracting patterns which are highly accessed in mobile web service sequences. Different from the traditional fuzzy approach, high fuzzy utility mining considers not only counts of mob...

متن کامل

A New Algorithm for High Average-utility Itemset Mining

High utility itemset mining (HUIM) is a new emerging field in data mining which has gained growing interest due to its various applications. The goal of this problem is to discover all itemsets whose utility exceeds minimum threshold. The basic HUIM problem does not consider length of itemsets in its utility measurement and utility values tend to become higher for itemsets containing more items...

متن کامل

Mining of high utility-probability sequential patterns from uncertain databases

High-utility sequential pattern mining (HUSPM) has become an important issue in the field of data mining. Several HUSPM algorithms have been designed to mine high-utility sequential patterns (HUPSPs). They have been applied in several real-life situations such as for consumer behavior analysis and event detection in sensor networks. Nonetheless, most studies on HUSPM have focused on mining HUPS...

متن کامل

Efficient Mining of High Average-Utility Itemsets with Multiple Minimum Thresholds

High average-utility itemsets mining (HAUIM) is a key data mining task, which aims at discovering high average-utility itemsets (HAUIs) by taking itemset length into account in transactional databases. Most of these algorithms only consider a single minimum utility threshold for identifying the HAUIs. In this paper, we address this issue by introducing the task of mining HAUIs with multiple min...

متن کامل

Efficiently Mining High Utility Sequential Patterns in Static and Streaming Data

High utility sequential pattern (HUSP) mining has emerged as a novel topic in data mining. Although some preliminary works have been conducted on this topic, they incur the problem of producing a large search space for high utility sequential patterns. In addition, they mainly focus on mining HUSPs in static databases and do not take streaming data into account, where unbounded data come contin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017